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Goal of Contextual Text Block Detection

* Contextual Text Block Detectionl'! (CTBD) aims to detect contextual text blocks within
natural scenes, which are aggregates of one or more integral text units, such as characters,
words, or text-lines, arranged in their natural reading order.

Scene Text Detection Contextual Text Detection

[1] Xue, Chuhui, et al. "Contextualtext block detection towards scene text understanding." European Conference on Computer Vision. 2022.



Challenges of Contextual Text Block Detection

Within Document Images Within Natural Scenes
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Abstract

We develop a new method to sample from posterior distributions in hierarchical
models without using Markov chain Monte Carlo. This method, which is a variant
of importance sampling ideas, is generally applicable to high-dimensional models
involving large data sets. Samples are independent, so they can be collected in par-
allel, and we do not need to be concerned with issues like chain convergence and
autocorrelation. Additionally, the method can be used to compute marginal likeli-
hoods.
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* Consistent font styles and sizes » Diversity in text font styles and sizes
* Clear spatial alignment * Unclear spatial alignment among text units
* Lack of background noises * Background noises that obscure text



Prior Arts

* Top-Down Methods

* Adopt box-regression based object detection frameworks to identify text blocks
* E.g.,R-CNN, Fast R-CNN, Faster R-CNN, YOLOv5, Deformable DETR, ...

* Leverage instance segmentation frameworks to segment text blocks
 E.g.,Mask R-CNN, Mask2Former, SOLO, TransDLANet, Mask DINO, ...

* Facing challenges in accurately detecting contextual text blocks in complex natural
scenes and obtaining the reading order among the text units

* Bottom-Up Methods

* Detect the text units first, and then group them into text blocks arranged in their natural
reading order

* E.g., Post-OCR Paragraph Recognition, Unified Line and Paragraph Detection, Hybrid POD,
HierText, CUTE, ...



ROIAlign [ Flatten >

Linear
Projection

La

Backbone Transformer

Input Image L

flegral Text Detector

Integral

Embedding Extractor

Contextual Text

Block Generator )

Feature

I Embeddings

+ Indexing
Embeddings

+ Spatial
Embeddings

Predicted
Following

Token Indices

Detected

. | BER-ELEE VLTI | o

Text Blocks

CUTEL"): An NLP Perspective

First to define the task of contextual text
block detection

Establish two benchmark datasets

Frame it as a sequence modeling
problem

Inefficient prediction in vastindex space

Challenges in modeling more complex
relationships

Limited in leveraging broader visual
features for CTBD

[1] Xue, Chuhui, et al. "Contextualtext block detection towards scene text understanding." European Conference on Computer Vision. 2022.



Post-OCR Paragraph Recognitionl!:
Introduce Graph Structure into Paragraph Recognition
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[1] Wang, Renshen, Yasuhisa Fujii, and Ashok C. Popat. "Post-ocr paragraph recognition by graph convolutional networks." Winter Conference on Applications of Computer Vision. 2022.



Core ldea of Our Approach:
Introduce Dynamic Graph Structure to CTBD

* Propose to frame contextualtext block

~ Dynunilc Craph Stracture Refioement | detection as a graph generation problem.
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[1] Ma, Chixiang, et al. “DQ-DETR: Dynamic Queries Enhanced Detection Transformer for Arbitrary Shape Text Detection.” International Conference on Document Analysis and
Recognition, 2023.



DRFormer: Dynamic Relation TransFormer
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Benchmark Datasets

e ReCTS-Context

* Includes a corpus of 15,000 training images and 5,000 test images.

* The majority of text units are characters, presenting a unique challenge in predicting
reading order relationships.

e SCUT-CTW-Context

* Contains a corpus of 940 training images and 498 test images.

* The majority of text units are words, offering rich contextual information across various
scenes.

The statistics of the ReCTS-Context and SCUT-CTW-Context datasets:
‘integral’: Integral Text Units; ‘block’: Contextual Text Blocks; ‘#’: Number.

Integral # integral # integral +# block
Text per block per image per image

ReCTS-Context  Character 440,027 107,754 20,000 4.08 22.00 5.39
SCUT-CTW-Context Word 25,208 4,512 1,438 5.56 17.65 3.17

Dataset # integral # block # image




Evaluation Metrics

* Local Accuracy (LA)

* Evaluate the accuracy of order prediction for neighboring text units.

SWEET gapP

* Local Continuity (LC)

* Evaluate the continuity of text units by computing a modified n-gram precision score as
inspired by BLEU, where n varies from 1 to 5.

* Global Accuracy (GA)

* Evaluate the detection accuracy of complete contextual text blocks.




Comparisons with Prior Arts

* Performance comparison on SCUT-CTW-Context

IoU=0.5 IoU=0.75 IoU=0.5:0.05:0.95

Models ° : ; ;

A 1c GA 1A e ar 1A 1c ca Upper Bound Evaluation with GT Text Units
CUTE-R50 [ | 54.0 39.2 30.7 41.6 31.2 237 394 200 22.1 Models

LINK-R101 [ ] 257 34 192 200 29 147 196 2.7 144 LA LC GA LA LC GA

CUTE—RIOli_l 55.7 394 326 40.6 29.0 228 40.0 283 22.7 LINK-R50 30.2 4.5 29 8 83.8 684 61.1
Baseline-R50 67.6 557 458 56.5 43.6 37.3 47.4 37.1 31.9 | CUTE-R50 71.5 585 49.7 921 828 76.0 |

DRFormer-R50 69.6 59.0 47.8 58.1 46.0 39.3 48.9 39.3 33.3 LINK-R101 45.5 6.3  31.7 86.7 T75.0 69.6
| CUTE-R101 71.5 58.7 52.6 93.1 83.7 77.8 |

. Baseline-R50 80.3 T71.0 58.7 90.9 81.8 82.8

* Performance comparison on ReCTS-Context DRFormer-R50 83.9 76.0 605 028 859 855

ToU=0.5 ToU=0.75 ToU=0.5:0.05:0.95

Models

LA LC GA LA LC GA LA LC GA

LINK-R50 [ ] 68.2 57.5 484 53.8 50.2 384 53.0 47.7 37.3
CUTE-R50 [ ] 704 64.7 51.6 544 56.6 39.5 539 53.6 389
LINK-R101 [ ] 70.8 59.1 499 545 51.0 39.0 534 483 379
CUTE-R101 [ | 724 67.3 53.8 55.1 57.0 40.2 54.6 53.9 394

Baseline-R50 822 714 69.6 632 500 528 564 46.0 476
DRFormer-R50 83.3 74.6 71.8 67.6 559 56.9 59.4 50.0 50.6




Effectiveness of Various Components

 Keycomponents:
 Dynamic Graph Structure Refinement (DGSR)

* Cross-Attention First (CAF)
* Relation-Aware Self-Attention (RASA)

 Ablation studies on SCUT-CTW-Context dataset.

# Method DGSR  CAF  RASA LA LC GA
80.3 71.0 58.7

1 Baseline
2 v 82.3 72.6 H&.8
3 v v 83.4 75.3 60.2

4 DRFormer V v v 83.9 76.0 60.5




Comparison Examples
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Conclusion and Future Work

e Conclusion

* Framing contextual text block detection as a graph generation problem is
an effective problem formulation for CTBD.

* DRFormer provides a promising avenue for integrating dynamic graph
structures into the relation prediction process.

* Future work
* Integrate text embeddings to enhance relation prediction accuracy.
 Explore applying dynamic graph structure refinement to related tasks like
Scene Graph Generation and Graph Structure Learning.
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